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Abstract

The case of a rotating shaft with internal damping mounted either on elastic dissipative bearings or on infinitely rigid

bearings with viscoelastic suspensions is investigated in order to obtain the stability region. A Euler–Bernoulli shaft model

is adopted, in which the transverse shear effects are neglected and the effects of translational and rotatory inertia,

gyroscopic moments, and internal viscous or hysteretic damping are taken into account. The hysteretic damping is

incorporated with an equivalent viscous damping coefficient. Free motion analysis yields critical speeds and threshold

speeds for each damping model in analytical form. In the case of elastic dissipative bearings, the present results are

compared with the results of previous studies on finite element models. In the case of infinitely rigid bearings with

viscoelastic suspensions, it is established that viscoelastic supports increase the stability of long shafts, thus compensating

for the loss of efficiency which occurs with classical bearings. The instability criteria also show that the effect of the

coupling which occured between rigid modes introducing external damping and shaft modes are almost more important

than damping factor. Lastly, comparisons between viscous and hysteretic damping conditions lead to the conclusion that

an appropriate material damping model is essential to be able to assess these instabilities.

r 2007 Published by Elsevier Ltd.
1. Introduction

The use of driveshafts in the supercritical range has proved to be of great interest for many applications,
especially those involving long drivelines (helicopters, tiltrotors, etc.). However, in the field of rotordynamics,
internal damping, which is also called rotating damping, is known to cause whirl instabilities in this speed
range. In particular, with long driveshafts consisting of materials which are more dissipative than metallic
materials (such as some carbon/epoxy laminates [1]), these instabilities tend to occur more frequently. The aim
of the present study was to develop a theoretical model for determining these instabilities and to establish the
most decisive parameters.
ee front matter r 2007 Published by Elsevier Ltd.
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Nomenclature

a shear strain parameter
c viscous damping
d modal damping
E, G Young’s modulus and shear modulus of

the shaft
I mass moment of inertia =~y or =~z per unit

mass density and unit length equal to the
diametrical cross-section of inertia

i imaginary unit
ffiffiffiffiffiffiffi
�1
p

J mass moment of inertia /~x per unit mass
density and unit length

k stiffness
l length of the shaft
m mass
ðo; ~x;~y;~zÞ fixed frame of reference
ðO; ~x; ~Y ; ~ZÞ rotational frame of reference
r shaft radius
S cross-section area of the shaft
u complex displacement
U complex amplitude of the complex dis-

placement u

� distance between the sectional centre of
inertia and the shaft theoretical axis
without deformations

Z loss factor
y complex rotation
Y complex amplitude of the complex rota-

tion y
k shear coefficient
l complex frequency of the rotor

m viscous loss factor
r density of the shaft
O spin speed
ob1 natural frequency of the cylindrical rigid-

body mode (infinitely rigid shaft)
ob2 natural frequency of the conical rigid-

body mode (infinitely rigid shaft)
osn nth natural frequency of a beam with

constant cross-section in bending, simply
supported at both ends

Subscript

B�;Bþ lower and higher backward speeds
b bearing
c critical
e external
eq equivalent
F�;Fþ lower and higher forward speeds
hyst hysteretic model
i internal
ths threshold speed
p (2 fB�;Bþ;F�;FþgÞ
n number of the sine mode or number of

the harmonic ð2 N�Þ

s shaft
sub subcritical
sup supercritical
visc viscous model
0 gyroscopic effects assumed to be negli-

gible ðGn � 0Þ
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In the field of rotordynamic, internal damping is generally treated like viscous damping, because this
parameter can easily be introduced into rotor equations, and because viscous damping is reasonably realistic
to simulate external dissipation (roller bearings, hydrodynamic bearings, etc.). However, most materials
are known to show vibratory damping behaviour which resembles hysteretic damping much more than
viscous damping, as in the case of metallic materials [2], carbon/epoxy materials [1] and in a more approximate
way, viscoelastic materials such as elastomers [3]. The main characteristics of hysteretic damping are as
follows: the corresponding hysteresis loop (stress–strain loop) is independent of the excitation frequency; the
cyclic energy dissipation is independent of the excitation frequency and proportional to the square of the
deflection amplitude. In classical vibration mechanics, hysteretic damping is often used and generally
introduced using the complex stiffness. However, in rotordynamics, it is difficult to introduce complex stiffness
into the rotating reference frame except in some particular cases (such as that of forced motion [4]). In most
cases, it is therefore necessary to use an equivalent viscous damping coefficient. This procedure still requires
some care to be taken because of the multi-frequency excitation. In particular, whirl speeds in the rotating
reference frame differ from those occuring in the fixed reference frame. Wettergren has shown both
theoretically and experimentally that these hysteretic damping factors can be replaced by the equivalent
viscous damping even when multi-frequencies are involved [5]. The equations can therefore be treated using a
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classical approach with an internal viscous damping term. An equivalent coefficient is then introduced into the
modal solutions.

Here it is proposed to show the differences between the stability results obtained with internal viscous
damping and internal hysteretic damping models, in the particular case of a continuous symmetrical
dissipative shaft without any disk. Since external damping is necessary to obtain a stable range in supercritical
motion, two cases are studied: a shaft mounted on elastic dissipative bearings, and a shaft with infinitely rigid
bearings mounted on viscoelastic supports.

In the first part, a Euler–Bernoulli beam model is adopted, which neglects the transverse shear effects but
takes the effects of translational and rotatory inertia, gyroscopic moments, and internal viscous or hysteretic
damping into account. Free motion analysis gives critical speeds and instability criteria for each damping
model in an analytical form. In the literature, these instabilities due to internal damping have generally been
obtained numerically using finite elements methods. The case of viscous damping can easily be dealt with
using finite elements methods, whereas the case of hysteretic damping is not so straightforward, and has
given rise to several errors in the literature which were collected by Genta [6]. Note that Genta himself has
proposed a finite element model that accounts satisfactorily for hysteretic internal damping [7]. The main
advantages of analytical solutions compared to numerical results are that they give a better control over
parameters affecting the stability, and a better understanding of instability processes, and that they lend
themselves to extremely fast implementation for optimization computations. Analytical solutions also provide
reference data, which can be used in particular to check the validity of finite element models including
hysteretic internal damping. On the other hand, finite element computations are suitable for studing more
complex rotor configurations.

In the second part of this paper, three applications of results presented in the first part will be described. In
the first case study, the validity of the model is confirmed by comparing the solutions obtained with data
previously published in the literature which were obtained using various finite element models including a
viscous internal damping parameter. The second case study deals with the effects of hysteretic damping.
Lastly, to determine the effects of the viscoelastic supports, comparisons are made between the two shaft
configurations.

2. Axisymmetric elastic shaft model with internal damping

When operating rotors in the supercritical range, it is necessary to introduce external damping to reduce the
unbalanced vibration response amplitudes and to increase the stability. Since classical rolling-element bearings
and hydrodynamic bearings do not generally provide sufficient damping, additional squeeze-film dampers
are generally fitted. The main disadvantages of these bearing supports are the complexity of their installation,
their limited operational range and their high cost [3]. Another means of increasing the external
damping consists in adding dampers directly between the shaft and the fixed frame [8]. Lastly, an economic
solution, which has been developing during the last few years, consists in adding viscoelastic materials
such as elastomers between the bearing and the fixed framework. Kirk and Gunter have established
that these viscoelastic supports improve the stability domain of the disk-shaft system [9]. In a study on the
stability of a Jeffcott rotor with elastic linear bearings mounted on viscoelastic supports and with an
undamped elastic non-massive shaft, Dutt and Nakra showed that by choosing the viscoelastic supports
appropriately, it is possible to greatly increase the stability domain of the system [10]. In another paper, these
authors reported that the unbalanced responses of the same system were greatly reduced by incorporating
suitable viscoelastic supports [11]. Shabaneh and Zu studied a Jeffcott rotor with elastic dissipative bearings
mounted on viscoelastic supports, assuming the shaft to be elastic, massive and viscously damped [12]. Based
on a Timoshenko beam theory and a hysteretic damping model for the viscoelastic supports, they obtained
similar effects on unbalanced responses. Note that in all these studies, the shaft damping is always assumed to
be viscous.

This part of the paper focuses on two very similar shaft configurations in terms of their equations. The first
configuration consists of a shaft mounted on flexible bearings which are assumed to be elastic and viscously
damped (Fig. 1). The second one consists of a shaft mounted on infinitely rigid bearings with viscoelastic
supports assumed to show complex stiffness, i.e. to be elastic and hystereticly damped (Fig. 2). The two shaft



ARTICLE IN PRESS

Fig. 1. Configuration 1: elastic shaft mounted on flexible dissipative bearings.

Fig. 2. Configuration 2: elastic shaft mounted on infinitely rigid massive bearings on viscoelastic supports.
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configurations are governed by the same equations, only the mass of the bearings has to be added in the
second configuration.

We take a symmetric elastic shaft supported at both ends, as shown in Figs. 1 and 2, where ðO; ~x;~y;~zÞ is the
inertial frame. A Euler–Bernoulli beam theory is adopted: this theory is applicable to slender shafts, i.e. shafts
with a small diameter in comparison with their length, approximately l=r410. The Timoshenko beam theory
is useful if the shear strains are large, i.e. in the case of a stubby shaft or in the presence of disks. The shaft is
defined by its Young’s modulus E, its length l, its radius r and its mass density r. When the damping is
assumed to be hysteretic, it is defined by its loss factor Zi, but for convenience, it is necessary to define an
internal viscous damping term per unit length ci. The gyroscopic effect of the shaft is taken into account. The
eccentricity of a shaft section is given by the function �ðxÞ. This function defines the distance between the
sectional centre of inertia and the theoretical axis of the shaft without any deformations with x 2 ½0; l�. Gravity
is neglected.

In the case of configuration 1, the isotropic bearing is modelled by a Kelvin–Voigt model consisting of a
stiffness parameter ke ð¼ kyy ¼ kzzÞ and a viscous damping parameter ce ð¼ cyy ¼ czzÞ. In the case of
configuration 2, each axisymmetric bearing, which is assumed to be infinitely rigid, is represented by its mass
me, and each isotropic elastomer support is represented by a complex stiffness model consisting of a stiffness
ke ð¼ kyy ¼ kzzÞ and a loss factor Ze ð¼ Zyy ¼ ZzzÞ. In the latter case, for convenience, an external viscous
damping term ce will be used in the equations.

Subsequently, displacements will be expressed in complex form. The rigid-body motion (unstrained shaft)
consists in a displacement parallel to the O0~x axis and a rotation around the unstrained shaft centre Ct. This
displacement and this rotation are denoted ub (¼ uby þ iubz) and yb (¼ yby þ iybz), respectively. The deflection
of the shaft section centres C consists of a displacement relative to the unstrained shaft axle and is denoted
us ð¼ usy þ iuszÞ. With these notations, the cross-sectional displacement, i.e. the displacement of C relative to
the fixed frame is:

uðx; tÞ ¼ ubðtÞ þ x�
l

2

� �
ybðtÞ þ usðx; tÞ. (1)
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The boundary conditions in terms of the displacement are: one null moment when x ¼ f0; lg; one
null displacement between the shaft and the bearing when x ¼ f0; lg. These conditions are expressed
as follows:

u00s ð0; tÞ ¼ 0; u00s ðl; tÞ ¼ 0; usð0; tÞ ¼ 0; usðl; tÞ ¼ 0, (2)

where ðÞ0 ¼ q=qx. Based on the above assumptions and without any internal damping, the local governing
equation of motion for the shaft is classically [7]:

€u�
I

S
€u00 þ iO

J

S
_u00 þ

EI

rS
u0000 ¼ �ðxÞO2eiOt 8x 2 ½0; l�, (3)

where ð�Þ ¼ q=qt, S is the cross-section area of the shaft, I is the mass moment of inertia =~y or =~z per unit mass
density and unit length equivalent to the diametric cross-section of inertia, J is the polar moment of inertia
=~x per unit mass density and unit length, and O is the spin speed. Internal damping is introduced into this
equation, noting that this dissipation appears in the rotational frame, and that it is relative to the variable us

and not u. In that case, since u0000 ¼ u0000s , the local governing equation of motion for the shaft with internal
damping is

€u�
I

S
€u00 þ iO

J

S
_u00 þ

EI

rS
u0000s þ

ci

rS
ð _us � iOusÞ ¼ �ðxÞO2eiOt 8x 2 ½0; l�. (4)

Finally, the boundary conditions give two supplementary equations of motion corresponding to the
equilibrium of the shaft-bearings system in terms of force and moment:Z l

0

rS €udxþ 2me €ub þ 2ce _ub þ 2keub ¼

Z l

0

rS�ðxÞO2eiOt dx, (5)

Z l

0

rS x�
l

2

� �
€udxþ 2me

l2

4
€yb þ 2ce

l2

4
_yb þ 2ke

l2

4
yb ¼

Z l

0

rS x�
l

2

� �
�ðxÞO2eiOt dx. (6)

Studies on the unbalanced motion of this system have been presented in Refs. [13,14]. Let us therefore note
that by defining the stationary whirl _us ¼ iOus and according to Eq. (4), the internal damping has no effect.

Studies on the free motion corresponding to solving the characteristic equation are not usually carried out
using analytical methods. The equations of interest here are the above Eqs. (4)–(6) without the second
member:

€u�
I

S
€u00 þ iO

J

S
_u00 þ

EI

rS
u0000s þ

ci

rS
ð _us � iOusÞ ¼ 0 8x 2 ½0; l�; ð7ÞR l

0
rS €udxþ 2me €ub þ 2ce _ub þ 2keub ¼ 0; ð8ÞR l

0 rS x�
l

2

� �
€udxþ 2me

l2

4
€yb þ 2ce

l2

4
_yb þ 2ke

l2

4
yb ¼ 0: ð9Þ

8>>>>>><
>>>>>>:

The shaft mode shapes are assumed to be proportional to the sinusoid function. Therefore, the
displacements and rotations, with the harmonic n 2 N�, can be expressed as follows:

usðx; tÞ ¼ Usn sin
pnx

l

� �
eilnt; ubðtÞ ¼ Ubne

ilnt; ybðtÞ ¼ Ybne
ilnt, (10)

where Usn, Ubn are complex displacements, Ybn are complex rotations, and ln are complex eigenvalues. The
virtual work principle is applied and this yields weak formulation starting with the strong formulation Eq. (7):

8u� 2 KA0

Z l

0

€u�
I

S
€u00 þ iO

J

S
_u00 þ

EI

rS
u0000s þ

ci

rS
ð _us � iOusÞ

� �
u� dx ¼ 0. (11)

The kinematically admissible (KA0) displacement field is taken in the following form:

u� ¼ sin
pnx

l

� �
eilnt. (12)
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Substituting Eqs. (10) and (12) into the equations of motion (8), (9) and (11) yields, after some calculations:

½�Pnl
2
n þ GnOln þ idinðln � OÞ þ o2

sn�Usn � l2n
2

np
ð1� ð�1ÞnÞUbn � ð1þ ð�1Þ

n
Þ
l

2
Ybn

� �
¼ 0;

�F1l
2
n

ð1� ð�1ÞnÞ

2np
Usn þ ½�l

2
n þ de1iln þ o2

b1�Ubn ¼ 0;

F2l
2
n

ð1þ ð�1ÞnÞ

2np
Usn þ ½�l

2
n þ de2iln þ o2

b2�
l

2
Ybn ¼ 0;

8>>>>>>><
>>>>>>>:

(13)

with

o2
sn ¼

EI

rS

pn

l

� �4
¼

ksn

ms

; o2
bn ¼

ke

me þ
ms

2ð2þ ð�1ÞnÞ

; den ¼
ce

me þ
ms

2ð2þ ð�1ÞnÞ

,

din ¼
ci

rS
; Fn ¼

ms

me þ
ms

2ð2þ ð�1ÞnÞ

; Pn ¼ 1þ
I

S

pn

l

� �2
; Gn ¼

J

S

pn

l

� �2
, ð14Þ

where osn is the nth natural frequency of the shaft without any coupling effects (the exact eigenvalue of
a beam with a constant cross-section in bending, which is simply supported at both ends), ksn is the nth modal
stiffness of the shaft, ob1 and ob2 are the two natural frequencies of the rigid-body modes without any
coupling effects (the shaft is assumed infinitely rigid), den and din are the nth external and internal viscous
damping parameters per unit mass, and Fn is a ratio of mass between the mass of the shaft ms and the mass of
the bearings. Therefore, if n is an odd number, by replacing suffix 1 by n, the system (13) can be expressed as
follows:

½�Pnl
2
n þ GnOln þ idinðln � OÞ þ o2

sn�Usn ¼ l2n
4

np
Ubn;

½�l2n þ deniln þ o2
bn�Ubn ¼

Fn

np
l2nUtn;

Ybn ¼ 0:

8>>>><
>>>>:

(15)

If n is an even number, by replacing suffix 2 by n, the system (13) can be expressed as follows:

½�Pnl
2
n þ GnOln þ idinðln � OÞ þ o2

sn�Usn ¼ �l
2
n

4

np
l

2
Ybn;

Ubn ¼ 0;

½�l2n þ deniln þ o2
bn�

l

2
Ybn ¼ �

Fn

np
l2nUsn:

8>>>><
>>>>:

(16)

The two previous systems have an equivalent form and can be expressed as a single characteristic fourth-
order equation in terms of ln, which is suitable for all n 2 N�:

Cnl
4
n � ½GnOþ iðPnden þ dinÞ�l

3
n � ½o

2
sn þPno2

bn þ dinden � iOðGnden þ dinÞ�l
2
n

þ ½ðGno2
bn þ dindenÞOþ iðdino2

bn þ deno2
snÞ�ln þ ðo2

sn � idinOÞo2
bn ¼ 0, ð17Þ

with

Cn ¼ Pn �
4

n2p2
Fn. (18)

Let us express the eigenvalue solutions in complex form as follows:

ln ¼ on þ idn. (19)

The real part on and the imaginary part dn are an angular frequency term and a modal damping term,
respectively. Hence, assuming weak damping to occur in the rotor-system yields onbdn. It will be assumed
below that the angular frequencies are large in comparison with the modal damping, i.e. obd and in
particular fon;osn;obn;Ogbfdn; den; ding. This assumption makes it possible to calculate the real part of
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Eq. (17) at zero order relative to d and the imaginary part of this same equation at first order relative to d:

Cno4
n � GnOo3

n � ðo
2
sn þPno2

bnÞo
2
n þ GnOo2

bnon þ o2
bno

2
sn ¼ Oðo3dÞ � 0, (20)

ðdin þPnden � dn4CnÞo3
n � ðdin þ denGn � 3AnGnÞOo2

n

� ðdeno2
sn þ dino2

bn � 2dno2
sn þPno2

bnÞon þ dino2
bnO� dnGno2

bnO ¼ Oðo2d2
Þ � 0. ð21Þ

Eq. (20) has the advantage of being independent of dn and gives the four eigenvalues of the system directly
as a function of the spin speed. From this equation, it is then possible to directly obtain an analytical
expression for the critical speeds (noted ocn): when the shaft reaches a forward critical speed, the spin speed is
equal to ocn, and Eq. (20) therefore becomes

Dn1o4
n � ðo

2
sn þ Dn2o2

bnÞo
2
n þ o2

bno
2
sn ¼ 0 with Dn1 ¼ Cn � Gn; Dn2 ¼ Pn � Gn. (22)

In the case of the backward critical speeds, the spin speed is equal to �ocn, and Eq. (20) therefore becomes:

Dn3o4
n � ðo

2
sn þ Dn4o2

bnÞo
2
n þ o2

bno
2
sn ¼ 0 with Dn3 ¼ Cn þ Gn; Dn4 ¼ Pn þ Gn. (23)

Hence, the four critical speeds of the harmonic n are:

ocnF� ¼
o2

sn þ Dn2o2
bn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o4

sn þ 2ðDn2 � 2Dn1Þo2
sno

2
bn þ D2

n2o
4
bn

q
2Dn1

2
4

3
5

1
2

, (24)

ocnB� ¼ �
o2

sn þ Dn4o2
bn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o4

sn þ 2ðDn4 � 2Dn3Þo2
sno

2
bn þ D2

n4o
4
bn

q
2Dn3

2
4

3
5

1
2

, (25)

where � stands for the two equations with positive sign and negative sign, written in contracted form. The
angular frequencies ocnB� and ocnBþ are the backward critical speeds, and the other two, ocnF� and ocnFþ, are
the forward critical speeds.

Eq. (21) relates directly the modal damping dn to the angular frequencies on:

dnðOÞ ¼ din

o3
n 1þ

den

din

Pn

� �
� o2

bn þ
den

din

o2
sn

� �
on þ o2

bn � o2
n 1þ

den

din

Gn

� �� �
O

2onð2Cno2
n � o2

sn �Pno2
bnÞ þ Gnðo2

bn � 3o2
nÞO

. (26)

This equation therefore gives the stability of the system. An analytical solution for this expression
can be obtained if there exists an analytical solution for on. Let us assume the gyroscopic effects
to be insignificant in comparison with the inertia effects, i.e. Gn � 0. This assumption is particularly
valid in the case of the very first modes and that of thin tubes [13]. Eq. (20) therefore becomes a biquadratic
equation which is independent of the spin speed. These directly gives the following four analytical
solutions onp0:

onFþ0 ¼ �onBþ0 ¼
o2

sn þPno2
bn þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o4

sn þ 2ðPn � 2CnÞo2
sno

2
bn þP2

no
4
bn

q
2Cn

2
4

3
5

1
2

, (27)

onF�0 ¼ �onB�0 ¼
o2

sn þPno2
bn �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o4

sn þ 2ðPn � 2CnÞo2
sno

2
bn þP2

no
4
bn

q
2Cn

2
4

3
5

1
2

. (28)

The angular frequencies onB�0 and onBþ0 are the backward whirl speeds, and the other two, onF�0

and onFþ0, are the forward whirl speeds. Due to the assumption that there exist only weak gyroscopic
effects, these are independent of the spin speed. Analysis of Eqs. (27) and (28) gives the following relations
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(for proof, see Appendix A):

o2
nB�0 ¼ o2

nF�0oo2
bnoo2

nBþ0 ¼ o2
nFþ0, (29)

o2
nB�0 ¼ o2

nF�0o
o2

sn

Pn

oo2
nBþ0 ¼ o2

nFþ0. (30)

These inequalities show that the natural frequencies resulting from coupling effects between rigid-body
modes and flexural modes frame the uncoupled ones.

With the previous assumption that are the gyroscopic effects negligible, the modal damping of the npth
mode (n 2 N� and p 2 fB�;Bþ;F�;Fþg) is expressed according to Eq. (26) as follows:

dnp0ðOÞ ¼ din

o3
np0 1þ

den

din

Pn

� �
� o2

bn þ
den

din

o2
sn

� �
onp0 þ ðo2

bn � o2
np0ÞO

2onp0ð2Cno2
np0 � o2

sn �Pno2
bnÞ

. (31)

Classically, the sign of this equation for n 2 f1; . . . ;Ng and p 2 fB�;Bþ;F�;Fþg gives the stability of the
rotor system. When the modal damping dnp becomes negative, the shaft is unstable. To study the last equation,
it is necessary first to express the external and internal damping.
2.1. External damping

In configuration 1, the external modal damping den is assumed to be viscous and to be equal to ceð4þ
2ð�1ÞnÞ=me according to Eq. (14) since in this case ms ¼ 0.

In configuration 2, the external modal damping den is assumed to be hysteretic. To introduce hysteretic
damping, it is convenient to use an equivalent viscous damping constant ceq as follows:

ceq ¼
Zk

joj
, (32)

where Z is the loss factor, k is the stiffness and o is the excitation frequency. Problems arise when the
mechanical system is excited by several frequencies, as in the case of a rotor. The previously used substitution
procedure is not very suitable here, since o can take several values simultaneously. Wettergren [5] has analysed
this problem and shown both theoretically and experimentally that the critical speeds can be handled
separately. External damping of the npth mode can therefore be expressed as Zeke=jonpðOÞj. Assuming the
gyroscopic effects to be negligible, the frequency onp is approximated by onp0 (Eqs. (27), (28)) and the external
modal damping can therefore be expressed as follows:

denðOÞ ¼
Zeo

2
bn

jonp0j
. (33)

Finally, with the above assumptions, the external modal damping is a constant in both configurations and
therefore does not depend on the spin speed.
2.2. Shaft with internal viscous damping

If the shaft damping is assumed to be viscous, the internal modal damping din will be constant and can be
expressed according to Eq. (14) as ci=rS. The external and internal damping therefore do not depend on the
spin speed. Assuming the gyroscopic effects to be negligible, the sign of Eq. (31) can be studied directly.
Eqs. (29) and (30) show that (for details, see Appendix B): dnB�0 and dnBþ0 are positive at null speed and are
strictly increasing quantities depending on the speed; dnF�0 and dnFþ0 are positive at null speed and are also
strictly decreasing quantities depending on the speed. It can thus be concluded that only forward modes
nF� and nFþ can be unstable. The instability threshold can be obtained by solving dnF�0o0 and dnFþ0o0.
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This shows that the shaft will be unstable if:

O4onF�0 1þ
den

din

Pno2
nF�0 � o2

sn

o2
nF�0 � o2

bn

� �
¼ Oths:visc:nF�. (34)

With these assumptions, the instability threshold have a similar form to that of the well-known equation
obtained by Smith [15] for the Jeffcott rotor: Oths:visc ¼ osð1þ ðce=ciÞÞ, where os is the forward critical speed
(see also Refs. [7,16]), i.e. the internal damping has a destabilizing effect on the forward whirl modes, the
external damping always has a stabilizing effect, while the backward whirl modes are always stable. In
addition, the instabilities always take place in the supercritical field, since ðPno2

nF�0 � o2
snÞ=ðo

2
nF�0 � o2

bnÞ40
according to Eqs. (29) and (30).

2.3. Shaft with internal hysteretic damping

Shaft damping is now assumed to be hysteretic. Damping of this kind is introduced via the previous
equivalence (32). Internal damping has to be considered in the rotating frame of reference. The excitation
frequency therefore corresponds to jonpðOÞ � Oj. In this case, equivalent internal damping can be written in
the following form:

ceq ¼
Ziksn

jonpðOÞ � Ojl
. (35)

Assuming the gyroscopic effects to be negligible, i.e. onpðOÞ ¼ onp0 and noting that o2
sn ¼ ksn=ms, din ¼

ceq=rS according to Eq. (14) and ms ¼ rSl, the internal modal damping can be written in the following form:

dinðOÞ ¼
Zio

2
sn

jonp0 � Oj
. (36)

Assuming OX0, the absolute value can be removed:

dinðOÞ ¼
Zio

2
sn

O� onp0
for p 2 fB�;Bþg or p 2 fF�;Fþg and O4onF�0, (37)

dinðOÞ ¼
Zio

2
sn

onp0 � O
for p 2 fF�;Fþg and OoonF�0. (38)

These previous equations can be introduced into Eq. (31). In the backward modes, the internal modal
damping is therefore

dnB�0ðOÞ ¼
�Zio

2
snðo

2
nB�0 � o2

bnÞ þ denonB�0ðPno2
nB�0 � o2

snÞ

2ð2Cno2
nB�0 � o2

sn �Pno2
bnÞonB�0

, (39)

in the forward modes in the subcritical range (noted sub), it is

dnF�0:subðOÞ ¼
Zio

2
snðo

2
nF�0 � o2

bnÞ þ denonF�0ðPno2
nF�0 � o2

snÞ

2ð2Cno2
nF�0 � o2

sn �Pno2
bnÞonF�0

(40)

and in the forward modes in the supercritical range (noted sup), it is

dnF�0:supðOÞ ¼
�Zio

2
snðo

2
nF�0 � o2

bnÞ þ denonF�0ðPno2
nF�0 � o2

snÞ

2ð2Cno2
nF�0 � o2

sn �Pno2
bnÞonF�0

. (41)

As shown by Eqs. (39)–(41), internal hysteretic damping yields a constant modal damping, contrary to what
occurs in the case of viscous damping. Note that the only difference between Eqs. (40) and (41) is the sign of
the internal damping. If the internal damping is too large, the modal damping dnF�0:sup can be negative and the
system will tend to be unstable. From Eqs. (39)–(41), the following conclusion can be reached, as in the case of
the internal viscous damping (see Appendix C): backward whirl modes are always stable and forward whirl
modes can be unstable only in the supercritical range. This important conclusion confirms the role of
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hysteretic damping in rotors described by Genta [6,7]. Hysteretic damping has sometimes been poorly
understood, since it has been thought to result in unstable forward whirl modes even at null speeds. This is
physically impossible, because damping instabilities are due to forward modes which rotate in the negative
direction in the rotational frame of reference, i.e. when onF� � Oo0. This is possible only in the supercritical
range, whatever the damping model used (viscous, hysteretic or other). In this case only, the dissipation force
will tend to push the forward mode towards the outside, resulting in instability.

Instability of the forward mode develops when dnF�0:supo0. Assuming the gyroscopic effects to be
negligible, the instability criterion can be expressed in the case of both configurations 1 and 2 as follows (as
shown in Appendix C):

denonFþ0ðPno2
nFþ0 � o2

snÞ � Zio
2
snðo

2
nFþ0 � o2

bnÞ
o0 ¼) Oths:hyst:nFþ ¼ onFþ0;

X0 ¼) stable

(
(42)

and

denonF�0ðPno2
nF�0 � o2

snÞ � Zio
2
snðo

2
nF�0 � o2

bnÞ
40 ¼) Oths:hyst:nF� ¼ onF�0;

p0 ¼) stable;

(
(43)

these can be expressed in the case of configuration 2 as

ZekeFnðPno2
nFþ0 � o2

snÞ � Ziksnðo2
nFþ0 � o2

bnÞ
o0 ¼) Oths:hyst:nFþ ¼ onFþ0;

X0 ¼) stable

(
(44)

and

ZekeFnðPno2
nF�0 � o2

snÞ � Ziksnðo2
nF�0 � o2

bnÞ
40 ¼) Oths:hyst:nF� ¼ onF�0;

p0 ¼) stable:

(
(45)

In the case of configuration 2, this instability criterion has a similar form to that obtained by Genta [7] for the
Jeffcott rotor with internal and external hysteretic damping: ‘‘Zeke � Zikso0¼) forward whirl is unstable

throughout the supercritical domain’’ (where ks is the stiffness of the shaft).
Eqs. (42)–(45) show that the stability depends greatly on the values of Ziks and Zeke, but less commonly, that

it also depends on the differences o2
nF�0 � o2

bn and Pno2
nF�0 � o2

sn. When osn and obn are very different, for
example, assuming that o2

snbo2
bn, the coupling effect between rigid-body modes and flexural modes will be

weak, i.e. o2
nFþ0! o2

sn=Cn according to Eq. (27) and o2
nF�0 ! Pno2

bn=Cn according to Eq. (28), where Pn

and Cn are approximately equal to 1 when n is small. Consequently, when values of Ziks and ZekeFn are
reasonably realistic, the external damping part of the nF� mode will be large (and negative) according to Eq.
(45), whereas the internal damping part will be small, and it can therefore be concluded that this mode will
tend to be stable. On the other hand, when this analysis is carried out on the nFþ mode according to Eq. (44),
the results show that this mode will tend to be unstable. The stability therefore depends on the level of
hysteretic damping and likewise on the coupling between rigid-body modes and flexural modes, i.e. on the
similarity between the two mode frequencies.

Lastly, it should be noted, as in the case of viscous damping, that when no external damping is present, i.e.
Ze ¼ 0, the supercritical range will always be unstable.

3. Numerical examples and discussion

3.1. Case study 1: shaft with viscous internal damping mounted on undamped and damped isotropic flexible

bearings

Few studies have dealt so far with shafts without disks, taking the internal and external damping into
account. In order to confirm the validity of the above analysis and criteria, we first studied the case of a
continuous shaft with undamped and damped flexible isotropic bearings under viscous internal damping
conditions. This example has been studied by several authors [17–19] with various finite element models. Zorzi
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and Nelson [17] have studied a Euler–Bernoulli beam finite element model, for instance, while Özgüven and
Özkan [18] have introduced the shear parameter a ¼ 12EI=kGSl2 into the previous finite elements, and Ku
[19] have developed a Timoshenko beam finite element model. All these models take the effects of translational
and rotatory inertia, the gyroscopic moments and the internal viscous damping into account.

The shaft and the bearings have the following physical parameters [17–19]:

E ¼ 2:08� 1011 Pa; r ¼ 7830 kgm�3; l ¼ 1:27m; r ¼ 0:0508m,

me ¼ 0 kg; ke ¼ 1:7512� 107 Nm�1; ce ¼ 1:7512� 103 N sm�1; mi ¼ 0:0002 s

where mi is a viscous damping equal to cil=kn with our notations. The modal damping is therefore din ¼ mio
2
sn.

The computation is carried out with n ¼ 2. From Eq. (14), the characteristics of the uncoupled system are:

ob1 ¼ 659 rad s�1; ob2 ¼ 1142 rad s�1; os1 ¼ 801 rad s�1 and os2 ¼ 3204 rad s�1.

In the present study, the natural whirl speeds and the logarithmic decrement, defined as d ¼ 2pd=joj, can be
computed using three methods. The first method consists in solving the characteristic equation (17) using
numerical methods. The second method corresponds to finding the numerical solutions of Eqs. (20) and (21),
which take the gyroscopic effects into account but involve the assumption that obd. The third method consist
in calculating the approximate solutions (27), (28) and (31), in which the gyroscopic effects is assumed
negligible and obd.

The Campbell diagram resulting from the solutions of Eq. (17) is presented in Fig. 3(a) for the shaft without
external damping and in Fig. 3(b) for the shaft with external damping. The logarithmic decrement and the
results obtained by Ku [19] are also given in these figures. The logarithmic decrement curves obtained using
the three methods mentioned above are presented in Fig. 4(a) in the case of the shaft without any external
damping and in Fig. 4(b) in that of the shaft with external damping. Lastly, Tables 1 and 2 present the whirl
speeds and logarithmic decrements obtained with the same three methods at a spin speed O ¼ 4000 rev=min
without any external damping, and these are compared with data available in the literature [17–19].
Fig. 3. Campbell diagram and logarithmic decrement of a shaft supported on undamped isotropic bearings (a) and damped isotropic

bearings (b) with viscous damping mi ¼ 0:0002 s in the case of a Euler–Bernoulli beam model (— and d from Eq. (17)) and in the case of a

Timoshenko beam finite element model (- - - and (d) from Ku [19]).
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Fig. 4. Logarithmic decrement of a shaft supported on undamped isotropic bearings (a) and damped isotropic bearings (b) with viscous

damping mi ¼ 0:0002 s (— Eq. (17); – – Eqs. (20), (21); � � � Eq. (31)).

Table 1

Whirl speed o ðrad s�1Þ of a shaft supported on undamped isotropic bearings with viscous damping mi ¼ 0:0002 s at a spin speed

O ¼ 4000 rev=min using various models

Mode Present work Ref. [17] Ref. [18] Ref. [19]

Eqs. (27), (28) Eq. (20) Eq. (17)

1F� 521 522 522 521 520 521

1B� 521 521 523 523 522 522

1Fþ 2303 2311 2287 2231 2223 2217

1Bþ 2303 2294 2268 2214 2206 2201

2F� 1098 1098 1099 1097 1096 1095

2B� 1098 1098 1101 1097 1095 1095

2Fþ 5217 5233 4588 4492 4447 4413

2Bþ 5217 5201 4552 4454 4412 4379

O. Montagnier, Ch. Hochard / Journal of Sound and Vibration 305 (2007) 378–400 389
In the case of the shaft without any external damping, the results given in Fig. 3(a) and Table 1 show
excellent agreement with previously published data in the case of whirl speeds denoted �. The difference is
more significant in the case of forward whirl speeds denoted þ. Comparisons between results obtained using
Eq. (17) and those obtained by Zorzi and Nelson show that whirl speeds 1Fþ and 1Bþ differ by
approximately 2.4% and whirl speeds 2Fþ and 2Bþ by approximately 2.2%. In the case of the shaft with
external damping (Fig. 3(b)), the differences are similar but whirl speeds 2F� and 2B� also differ by
approximately 2.2%. More significant differences are observed with results presented by Özgüven et al. and
Ku (between 3% and 4%) and these are probably due to shear effects, whereas these effects are neglected in
the present study, as in the finite elements study by Zorzi et al.

As shown in Table 1, all the methods yielded the same results in the case of whirl speeds denoted �, which
are almost independent of the spin speed. These modes correspond mainly to the rigid-body modes, which are
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Table 2

Logarithmic decrement d of a shaft supported on undamped isotropic bearings with viscous damping mi ¼ 0:0002 s at a spin speed

O ¼ 4000 rev=min using various models

Mode Present work Ref. [17] Ref. [18] Ref. [19]

Eqs. (27), (28), (31) Eqs. (20), (21) Eq. (17)

1F� 0.0254 0.0254 0.0254 0.0253 0.0252 0.0252

1B� 0.2330 0.2338 0.2303 0.2309 0.2321 0.2325

1Fþ 0.7169 0.7178 0.7234 0.7250 0.7830 0.7187

1Bþ 1.0357 1.0357 1.0502 1.0590 1.0540 1.0528

2F� 0.0335 0.0334 0.0329 0.0331 0.0341 0.0347

2B� 0.0748 0.0750 0.0691 0.0687 0.0709 0.0723

2Fþ 2.7781 2.7990 3.1325 3.0480 2.9810 2.9409

2Bþ 3.2632 3.2638 3.7690 3.6810 3.6070 3.5634
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not very sensitive to gyroscopic effects. On the other hand, significant differences are found to exist between
the three methods in the case of whirl speeds denoted þ, especially in modes 2Fþ and 2Bþ. The difference
between the solution of Eqs. (20), (21) and the solution of Eq. (17) is due to the weak damping assumption
(obd), and this assumption is not true here (d\3 i.e. d\joj=2, as shown in Table 2). In this case, the
damping cil is equal to 2:064� 104 N sm�1 with n ¼ 1 and 3:312� 105 N sm�1 with n ¼ 2. These values mean
that the internal damping mi ¼ 0:0002 s is extremely high, and not very realistic or of purely academic interest.
In addition, the whirl speeds given by Eqs. (20), (21) and Eqs. (27), (28) show a good agreement (Table 1). This
confirms the assumption that the gyroscopic effects are negligible in these first modes. More significant
differences are likely to occur at higher spin speeds, since Eqs. (27), (28) are constant. However, it can be
concluded that analytically calculated whirl speeds (Eqs.(27), (28)) are accurate.

The logarithmic decrements presented in Fig. 3 and Table 2 show good agreement. Comparison between the
results given by Eq. (17) and those published by Zorzi et al. (Table 2) show the existence of differences of less
than 3% in the modes 2Fþ and 2Bþ and less than 1% in the other modes. Moreover, based on Fig. 4 and
Table 2, all the values obtained here are very similar in the modes 1F� to 2B�. On the other hand, the
logarithmic decrements obtained in modes 2Fþ and 2Bþ differ significantly. These differences are mainly due
to the difference in the whirl speed o, because the errors on the modal damping d ¼ djoj=2p amounted to less
than 1%. In addition, the logarithmic decrements obtained from Eqs. (20), (21) and Eqs. (27), (28), (31) show
good agreement (dashed and dotted lines in Fig. 4). As with the whirl speeds, this confirms the assumption
that the gyroscopic effects are negligible. Lastly, it can be seen by comparing Figs. 4(a) and (b) that including
the external damping in the model increases all the logarithmic decrements, which tend to shift the instability
threshold to a higher spin speed.

As far as stability is concerned, the present results are in good agreement with previously published data.
When there is no external damping, instability occurs only in the forward modes and the instability threshold
begins at the critical speed (Figs. 3(a) and 4(a)). Under external damping conditions, the instability threshold is
shifted to a higher spin speed (Fig. 3(b)). The instability threshold of the mode 1F� occurs at a spin speed of
8889 rev=min according to Eq. (17), 8862 rev=min according to Eqs. (20), (21) and 8804 rev=min according to
the analytical criterion (Eq. (34)). Ku obtained an instability threshold in the same mode at a spin speed of
8800 rev=min and Zorzi et al. obtained a value of 9200 rev=min. Comparisons between these results show that
the analytical instability criterion gives accurate results.

3.2. Case study 2: shaft with hysteretic internal damping with undamped and damped isotropic flexible bearings

The same shaft is studied here as in case 1, but the internal viscous damping is replaced by hysteretic
damping. Previous authors [17–19] have studied this case with the above physical parameters and a loss factor
Zi equal to 0.0002. This value is extremely low although Zorzi et al. and Ku [17,19] reported that this hysteretic
damping destabilized all the forward modes at any spin speed, even at null speed. As previously established,
this is physically impossible [6].
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A more realistic loss factor value, in the case of steel for example, ranges between 0.002 and 0.004. These
values are low and they can be higher with other materials such as carbon/epoxy laminate materials because
of the epoxy resin (depending of course on the stacking sequence). To obtain more conspicuous effects
of the internal damping on the simulations presented here, it was therefore proposed to use a loss factor
Zi ¼ 0:04.

In this example, as in the viscous case, the whirl speeds and logarithmic decrements can be computed using
three methods. The first method consists in solving the characteristic equation (17) numerically. However, this
computation is more complex than in the previous case because the internal modal damping ((37), (38))
requires knowing the whirl speeds, which means using an iterative process. In addition, the hysteretic damping
model gives rise to convergence problems at the critical speeds: at these speeds, the internal modal damping
((37), (38)) tends to infinity because the whirl speed tends to zero in the rotating frame of reference. Therefore,
the computation of Eq. (17) is first carried out without any internal damping, in order to obtain an
approximation of the whirl speed values, and several iterations are then carried out with the corresponding
internal damping values. Divergence occurs very quickly when a spin speed approaches a whirl speed. The
second method corresponds to finding the numerical solutions of Eqs. (20), (21), which involve the assumption
that obd. This method is a direct method because Eq. (20) does not include a damping term. The third
method consists in calculating the approximate solutions and instability criteria (27), (28), (39)–(41), in which
gyroscopic effects are assumed to be negligible and obd.

The Campbell diagram and logarithmic decrement resulting from solution of Eq. (17) are presented in
Fig. 5(a) for the shaft without external damping and in Fig. 5(b) for the shaft with external damping. The
logarithmic decrement curves obtained using the three methods described here are presented in Fig. 6(a) for
the shaft without external damping and in Fig. 6(b) for the shaft with external damping. Lastly, Table 3
gives the whirl speeds and logarithmic decrements obtained using the three methods at a spin speed
O ¼ 4000 rev=min, without any external damping.

Comparisons between Figs. 5(a) and (b) show that whirl speeds are not affected by incorporating external
damping. The good agreement observed between the solutions of Eq. (20) and Eq. (17) in Table 3 confirms
Fig. 5. Campbell diagram of a shaft supported on undamped isotropic bearings (a) and damped isotropic bearings (b) with hysteretic

damping Zi ¼ 0:04 (— Eq. (17) without internal damping; d corresponding to Eq. (17) with internal damping).
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Fig. 6. Logarithmic decrement of a shaft supported on undamped isotropic bearings (a) and damped isotropic bearings (b) with hysteretic

damping Zi ¼ 0:04 (— Eq. (17); – – Eqs. (20), (21); � � � Eqs. (39)–(41)).

Table 3

Whirl speed and logarithmic decrement of a shaft supported on undamped isotropic bearings with hysteretic damping Zi ¼ 0:04 at a spin

speed O ¼ 4000 rev=min

Mode o ðrad s�1Þ dð�Þ

Eqs. (27), (28) Eq. (20) Eq. (17) Eqs. (27), (28), (39)–(41) Eqs. (20), (21) Eq. (17)

1F� 498 498 498 0.0496 0.0494 0.0494

1B� 498 498 498 0.0496 0.0498 0.0497

1Fþ 2199 2207 2207 0.0761 0.0759 0.0759

1Bþ 2199 2191 2191 0.0761 0.0763 0.0763

2F� 1049 1049 1049 0.0099 0.0098 0.0098

2B� 1049 1049 1049 0.0099 0.0099 0.0099

2Fþ 4982 4997 4997 0.1158 0.1155 0.1155

2Bþ 4982 4966 4966 0.1158 0.1162 0.1162
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this finding. The assumption that weak damping was involved is therefore true. The approximate solutions
(27), (28), yield exactly the same results in the modes denoted � and very similar results in the modes denoted
þ, amounting to a difference of only about 0:3% at O ¼ 4000 rev=min. The assumption that weak gyroscopic
effects were involved is therefore also true.

The logarithmic decrement curves in Figs. 6(a) and (b) are typical hysteretic damping curves. Without any
external damping (Fig. 6(a)), the logarithmic decrement curves of the backward modes are positive and
approximately constant, whereas those of the forward modes are positive and approximately constant until
the corresponding critical speed is reached and they suddenly shift to a negative sign, which makes the system
unstable. It can be noted that the logarithmic decrements obtained using all three methods proposed here give
very similar results (Fig. 6 and Table 3). When external damping is present (Fig. 6(b)), the logarithmic
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Fig. 7. Campbell diagram (a: — Eq. (17) with 100 iterations) and logarithmic decrement (b: — Eq. (17) with 100 iterations; – – Eqs. (20),

(21); � � � Eqs. (39)–(41)) of a shaft supported on damped isotropic bearings with hysteretic damping Zi ¼ 0:04. The overestimated internal

damping close to the 3Fþ critical speed is magnified in the circles.
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decrement curves are shifted upwards. In the speed range under consideration, the system is stable since all the
logarithmic decrements are positive. Here again, the results obtained with the three methods are found to be in
good agreement, except near the critical speeds, where divergence occured in the computation of Eq. (17)
(solid lines in Fig. 6(b)).

The threshold speed was investigated at a spin speed greater than 20 000 rev=min under external damping
conditions. The Campbell diagram and logarithmic decrement with n ¼ 3 are given in Fig. 7. Whirl speeds and
corresponding logarithmic decrements were obtained by solving Eq. (17) with the previously described
iterative method. This computation was carried out by performing 100 iterations. Similar results were
obtained when a larger number of iterations was performed. It can be seen from Fig. 7 that the results of the
hysteretic damping model are not physically relevant at spin speed close to any forward critical speed. For
example, when O is close to o3Fþ (in the zone surrounded by a circle in Fig. 7(a)), it can be written
di3Fþbfo3Fþ;os3Fþ;ob3Fþ; de3Fþg then Eq. (17) divided by di3Fþ at order 0 relatively to o=d can be written as
follows:

�il33Fþ þ iOl23Fþ þ io2
b3Fþl3Fþ � iOo2

b3Fþ ¼ O
o4

d

� �
þ iO

o4

d

� �
� 0.

This equation has the obvious solution l3Fþ ¼ O, which means that o3Fþ ¼ O and d3Fþ ¼ 0. This result
corresponds to the zones surrounded by the circles in Fig. 7, and was also obtained in Ref. [6] without any
explanation being given by the author. However, one must to be careful about this result since hysteretic
damping has no significance in the case of non-sinusoidal excitation and the excitation frequency tends here to
0. The results obtained in this zone are obviously different from those obtained with the other two methods,
where weak damping was assumed to occur. However, the three methods including the instability criterion
(Eq. (42)) give the threshold speeds corresponding to the 3Fþ critical speed i.e. at a spin speed O ¼
73 654 rev=min according to Eq. (24) and O ¼ 73 681 rev=min according to Eq. (20). Finally, let us note that
the instability threshold was found to be in the same mode with a ten-fold lower hysteretic internal damping
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value, i.e. Zi ¼ 0:004. This point confirms the fact that differences o2
nF�0 � o2

bn and Pno2
nF�0 � o2

sn decisively
determine the occurence of instability (Eqs. (42) and (43)).

All these results show that the instability criterion gives accurate results for determining the instability
threshold speed in the case of hysteretic internal damping.

3.3. Case study 3: shaft with infinitely rigid bearings mounted on viscoelastic supports

It is now proposed to compare configuration 1 (case studies 1 and 2) with configuration 2 (Fig. 2), i.e.
isotropic damped flexible bearings with infinitely rigid bearings mounted on viscoelastic supports. These
comparisons were carried out with previous data and additional data in the case of configuration 2:

me ¼ 1 kg; ke ¼ 2� 106 Nm�1; Ze ¼ 0:07.

On the other hand, the length of the shaft is now examined as a parameter. Let us note that the stiffness of
the bearings in configuration 1 is ten times greater than the stiffness of the supports in configuration 2. This
greatly affects the frequencies of the rigid-body modes.

With a given shaft length, the aim of this case study was to maximize the stability domain depending
on the choice of these low cost supports (classical bearings or viscoelastically supported bearings).
This study is quite simple, since the data on the bearings and supports are assumed to be independent of the
shaft length. However, the kind of support is variably decisive, depending on the shaft length. Figs. 8(a)
and (b) give whirl and threshold speed maps for configurations 1 and 2, respectively. The critical
speeds were obtained from Eq. (24) and threshold speeds from Eq. (34) (with mi ¼ 0:00002 s, i.e. mi is
ten times lower than in case study 1) in the case of internal viscous damping and from Eqs. (42) and (43)
(with Zi ¼ 0:04) in that of hysteretic internal damping. In configuration 1, the efficiency zone of the
bearing with external viscous damping is approximately in the l 2 ½1; 2�m range. In the second configuration,
Fig. 8. Critical speeds and instability speeds versus shaft length given by configuration 1(a) and configuration 2(b) (� � � ocnFþ and - - -

ocnF�: Eq. (24); — Oths:visc: Eq. (34) with mi ¼ 0:00002 s; — Oths:hyst: Eqs. (42), (43) with Zi ¼ 0:04; IDV, IDH and IDH&V: instability

domain for viscous model, for hysteretic model and for both models).
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the efficiency zone of the viscoelastically supported bearing with external hysteretic damping is approximately
in the l 2 ½2; 4�m range. In each figure, coloured areas correspond to the instability domains predicted
either by the viscous internal damping model or by the internal damping hysteretic model or by both
models.

The two figures show the stability zone located in the supercritical region with the two internal damping
models. It can be seen here that in configuration 1 (Fig. 8(a)), the stability zone disappears at lengths
greater than 1:48m with hysteretic damping and tends to disappear at lengths greater than 2m with
viscous damping. In configuration 2, a stability zone located in the supercritical region is again visible
in the case of both models. In particular, with the hysteretic model, this zone occurs between shaft
lengths of 2:55m and 3:56m. These results show that viscoelastic supports are most efficient with very long
shafts, which is particularly useful in the case of some applications, such as the long drivelines of helicopters
and tiltrotors.

In these two figures, it is worth noting that both damping models can be seen to delimit very different
zones, which shows the importance of determining the damping behaviour of the shaft material as
well as other dissipative process occurring in the rotating frame of reference, such as friction between rotating
parts.
4. Conclusion

The case of a rotating shaft with either internal damping and dissipative bearings or infinitely rigid bearings
mounted on viscoelastic supports was investigated here using analytical methods. The aim of this paper was to
compare the results obtained with the two usual models for internal damping: the viscous model and the
hysteretic model. The latter model is classically held to simulate more closely the real damping behaviour of
the materials usually used to produce rotating shafts. A Euler–Bernoulli beam model was proposed for the
shaft, which neglects the shear effects but takes the effects of translational and rotatory inertia, gyroscopic
moments, and internal viscous or hysteretic damping into account. Hysteretic damping was modelled by
including an equivalent viscous damping term.

Assuming the damping to be weak and the gyroscopic effects to be negligible, this study focused mainly on
the analytical critical speeds and instability criteria resulting from the addition of internal damping. When
these assumptions did not give satisfactory results, the model was studied numerically. The form of the criteria
obtained in both the viscous and hysteretic cases was in good agreement with those available in the literature
on the Jeffcott rotor. These criteria clearly confirm the fact that internal damping instabilities can only exist in
the forward whirl modes in the supercritical range, whatever the damping model used. Here we established in
particular that the effects of the coupling between rigid-body modes introducing external damping and flexural
modes are as important as the effects of the damping level, i.e. the stability greatly increases when a rigid-body
frequency approaches a flexural frequency.

In the case of internal viscous damping, a comparative study showed that the results were in good
agreement with those obtained with several finite element models in previous studies. Studies on internal
hysteretic damping were carried out on the same example without making comparisons of this kind.
The results obtained in this case were in line with those published on Jeffcott rotor. The third
case study carried out here made it possible to determine the effects of viscoelastic supports on the
stability in the supercritical range. This study showed that viscoelastic supports provide stability when
classical bearings are less efficient, especially in the case of long shafts. Lastly, comparisons on the threshold
speeds based on viscous and hysteretic damping models showed the existence of large differences. Although
the two models are difficult to compare, since no real numerical correspondence exists between them, it is
possible to conclude that the determination of instabilities of this kind is highly dependent on the damping
model used. Therefore, to significantly improve the accuracy of threshold speed determinations, accurate
material damping identification is first required. This means that more complex damping models
such as frequency dependent damping models or combined viscous and hysteretic damping models are
required. In this case, the model presented here would make it possible to efficiently carry out this analysis
with numerical methods.
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Appendix A. Proof of Eqs. (29) and (30)

If n is an odd number, based on Eq. (14), it can be written as:

0oFn ¼ 2
ms

2me þms

p2. (A.1)

From previous equations, from several definitions in Eq. (18) and noting that Pn41, the following
inequality can be obtained:

0o1�
8

n2p2Pn

p
Cn

Pn

¼ 1�
4Fn

n2p2Pn

o1. (A.2)

Likewise, if n is an even number, it can be written

0oFn ¼ 6
ms

6me þms

p6, (A.3)

therefore
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Finally, noting that Pn40, we obtain for all n:

0oCnoPn, (A.5)

therefore
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and consequently
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Adding the term ðo2
sn þPno2
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2
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sn to both sides of this inequality, the previous equation
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The left part of this inequality can be factorized as follows:
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The square root of the above expression yields two inequalities:
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These two expressions can be used to frame o2
bn as follows:
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Finally, from Eqs. (27) and (28), the first inequality required (Eq. (29)) can be obtained:

o2
nB�0 ¼ o2

nF�0oo2
bnoo2

nBþ0 ¼ o2
nFþ0.
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Likewise, upon multiplying Eq. (A.5) by 4Cn=Pno4
sn, the inequality becomes:
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therefore
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The square root of the above expression gives the second inequality required (Eq. (30)):
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Appendix B. Studies on the modal damping dnp0: the case of viscous internal damping

B.1. Damping of the modes nBþ

Eq. (27) with onBþ0 can be written as:
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Since o2
nBþ04o2

bn (Eq. (29)), pno2
nBþ04o2

sn (Eq. (30)) and onBþ0o0 (backward whirl), from the expression
for dnBþ0 in Eq. (31), the sign of dnBþ0 can be expressed as follows:
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It can then be concluded that dnBþ0 is positive at null spin speed and that it is a strictly increasing function
depending on O. nBþ modes are therefore always stable.

B.2. Damping of the modes nB�

Eq. (28) with onB�0 can be written as:
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It can then be concluded that dnB�0 is positive at null spin speed and that it is a strictly increasing function
depending on O. nB� modes are therefore always stable.

B.3. Damping of the modes nFþ

Eq. (27) with onFþ0 can be written as:
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Since o2
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sn (Eq. (30)) and onFþ040 (forward whirl), from the expression
for dnFþ0 in Eq. (31), the sign of dnFþ0 can be expressed as follows:
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It can then be concluded that dnFþ0 is positive at null spin speed and that it is a strictly decreasing function
depending on O. nFþ modes can therefore be unstable. The threshold speed Oths:visc:nFþ can be expressed by
solving the equation: dnFþ0ðOths:visc:nFþÞ ¼ 0.

B.4. Damping of the modes nF�

Eq. (28) with onF�0 can be written as:
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Since o2
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bn (Eq. (29)), Pno2
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sn (Eq. (30)) and onF�040 (forward whirl), from the expression
for dnF�0 in Eq. (31), the sign of dnF�0 can be expressed as follows:
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It can then be concluded that dnF�0 is positive at null spin speed and that it is a strictly decreasing function
depending on O. nF� modes can therefore be unstable. The threshold speed Oths:visc:nF�can be expressed by
solving the equation: dnF�0ðOths:visc:nF�Þ ¼ 0.

Appendix C. Studies on the modal damping dnp0: the case of hysteretic internal damping

C.1. Damping of the modes nBþ
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It can then be concluded that dnBþ0 is always positive. nBþ modes are therefore always stable.
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C.2. Damping of the modes nB�
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It can then be concluded that dnB�0 is always positive. nB� modes are therefore always stable.
C.3. Damping of the modes nFþ
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and in the supercritical range based on Eqs. (41) and (B.5)
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It can then be concluded that dnFþ0 is positive in the subcritical range and that it can become negative in the
supercritical range if
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In this case, this nFþ mode will always be unstable in the supercritical range.
C.4. Damping of the modes nF�
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and in the supercritical range based on Eqs.(41) and (B.7)
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�onF�0

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{40

þden ðPno2
nF�0 � o2

snÞ

zfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflffl{o0

2ð2Cno2
nF�0 � o2

sn �Pno2
bn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

o0

Þ
. (C.7)

It can then be concluded that dnF�0 is positive in the subcritical range and that it can become negative in the
supercritical range if

Zio
2
sn

o2
nF�0 � o2

bn

�onF�0
þ denðPno2

nF�0 � o2
snÞ40. (C.8)

In this case, this nF� mode will always be unstable in the supercritical range.
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